I PC'Globa

— e Triing o Professional Compatence

B-Tree

Introduction
e A B-Tree is a self-balancing search tree used in databases and file systems.

e It generalizes the idea of a Binary Search Tree (BST) but allows a node to have
multiple keys and multiple children.

e |t keeps data sorted and allows search, insertion, and deletion in O(log n) time.

Unlike BST/AVL/Red-Black Trees, a B-Tree is designed to work well with disk storage / large
data blocks.

Properties of B-Tree

Let the order of a B-Tree = m (max number of children a node can have).

1. Each node can have at most m children.

2. Each node (except root) must have at least [m/2] children.
3. Each node can contain at most m-1 keys.

4. Each node (except root) must contain at least [m/2] - 1 keys.
5. Keys inside a node are stored in sorted order.

6. All leaves appear at the same level (tree is balanced).

7. Search works like in BST:

o If key < current key — go to left child.

H.O- 205, LGF, Greater Kailash 1l, New Delhi — 110048, INDIA, e. info@tpcglobal.in , web: www.tpcglobalin

B.O: 5 R Tower, Shiva Enclave, GMS Road, Ballupur Chauk, Dehradun- 248 001, Utta;rakhand INDIA

I TPC'Globa

Sl Jraining for Professional (ompetence
o If key > current key — go to right child.

Example (B-Tree of Order 3 — 2-3 Tree)

Order = 3 means:

e Each node can have at most 2 keys and 3 children.

Example Tree after inserting [10, 20, 5, 6, 12, 30, 7, 17]:

[10, 20]
A | \
[5, 6, 7] [12, 17] [30]

Operations on B-Tree

(i) Search

e Start from root.
e Traverse keys in a node:

o If key found — Success.

o If key < current key — Move to left child.

o If key > largest key — Move to rightmost child.
e Continue until found or leaf reached.

e Time Complexity = O(log n).

(ii) Insertion

H.O- 205, LGF, Greater Kailash 11, New Delhi = 110048, INDIA, e. info@tpcglobal.in , web: www.tpcalobal.in
B.O: 5 R Tower, Shiva Enclave, GMS Road, Ballupur Chauk, Dehradun- 248 001, Uttarakhand, INDIA

I PC'Globa

wiw [pegiobal in Jmm ﬁm ﬂkﬂfﬂﬁ&ﬂ‘ﬂﬂl’ {?ﬂmpﬂﬂlﬂ

1. Always insert new key in a leaf node.

2. If the leaf has space (< m—1 keys), insert directly.
3. If the leaf is full:

o Split the node around the middle key.

o Promote the middle key to the parent.

o Repeat split if parent also becomes full.

(iii) Deletion

More complex than insertion.
Cases:

1. If the key is in a leaf node — simply delete.
2. If the key is in an internal node:

o Replace it with predecessor or successor key (from child subtree), then delete
from child.

3. If deletion causes underflow (less than [m/2] — 1 keys):
o Borrow a key from sibling (left or right).

o If sibling also has minimum keys — Merge with sibling.

Applications of B-Tree
e Databases & File Systems

o Usedin MySQL, Oracle, PostgreSQL, MongoDB.

H.O- 205, LGF, Greater Kailash 1l, New Delhi — 110048, INDIA, e. info@tpcglobal.in , web: www.tpcglobalin

B.O: 5 R Tower, Shiva Enclave, GMS Road, Ballupur Chauk, Dehradun- 248 001, Uttaral:hand INDIA

):CZV TPC Globa

— e Triing o Professional Compatence

e Indexing large data (secondary storage).

o Disk-based storage: minimizes disk reads.

e Search Engines for maintaining large indexes.

Complexity
Operation Time Complexity
Search O(log n)
Insertion O(log n)
Deletion O(log n)

Traversal O(n)

Much faster for disk access than AVL/Red-Black trees because of fewer height levels.

H.O- 205, LGF, Greater Kailash 1l, New Delhi — 110048, INDIA, e. info@tpcglobal.in , web: www.tpcglobalin
B.O: 5 R Tower, Shiva Enclave, GMS Road, Ballupur Chauk, Dehradun- 248 001, Uttarakhand, INDIA

